The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165456 Number of reduced words of length n in Coxeter group on 28 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I. 1
 1, 28, 756, 20412, 551124, 14880348, 401769396, 10847773692, 292889889684, 7908027021090, 213516729559224, 5764951697823864, 155653695833814360, 4202649787312378584, 113471544252017775096, 3063731694658235867448 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A170747, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS G. C. Greubel, Table of n, a(n) for n = 0..695 Index entries for linear recurrences with constant coefficients, signature (26,26,26,26,26,26,26,26,-351). FORMULA G.f.: (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +1)/(351*t^9 - 26*t^8 - 26*t^7 - 26*t^6 - 26*t^5 - 26*t^4 - 26*t^3 -26*t^2 - 26*t + 1). MAPLE seq(coeff(series((x^9+2*x^8+2*x^7+2*x^6+2*x^5+2*x^4+2*x^3+2*x^2+2*x+1)/( 351*x^9-26*x^8-26*x^7-26*x^6-26*x^5-26*x^4-26*x^3-26*x^2-26*x+1), x, n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 21 2018 MATHEMATICA CoefficientList[Series[(1+t)*(1-t^9)/(1-27*t+377*t^9-351*t^10), {t, 0, 30}], t] (* G. C. Greubel, Oct 20 2018 *) coxG[{9, 351, -26}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 16 2019 *) PROG (PARI) my(t='t+O('t^20)); Vec((1+t)*(1-t^9)/(1-27*t+377*t^9-351*t^10)) \\ G. C. Greubel, Oct 20 2018 (MAGMA) R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^9)/(1-27*t+377*t^9-351*t^10) )); // G. C. Greubel, Oct 20 2018 (Sage) def A165456_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P((1+t)*(1-t^9)/(1-27*t+377*t^9-351*t^10)).list() A165456_list(20) # G. C. Greubel, Sep 16 2019 (GAP) a:=[28, 756, 20412, 551124, 14880348, 401769396, 10847773692, 292889889684, 7908027021090];; for n in [10..20] do a[n]:=326*Sum([1..8], j-> a[n-j]) -351*a[n-9]; od; Concatenation([1], a); # G. C. Greubel, Sep 16 2019 CROSSREFS Sequence in context: A164025 A164664 A164970 * A165980 A166422 A166615 Adjacent sequences:  A165453 A165454 A165455 * A165457 A165458 A165459 KEYWORD nonn,easy AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 04:41 EDT 2021. Contains 345098 sequences. (Running on oeis4.)