login
A163257
An interspersion: the order array of the even-numbered columns (after swapping the first two rows) of the double interspersion at A161179.
4
1, 5, 2, 11, 6, 3, 19, 12, 8, 4, 29, 20, 15, 10, 7, 41, 30, 24, 18, 14, 9, 55, 42, 35, 28, 23, 17, 13, 71, 56, 48, 40, 34, 27, 22, 16, 89, 72, 63, 54, 47, 39, 33, 26, 21, 109, 90, 80, 70, 62, 53, 46, 38, 32, 25, 131, 110, 99, 88, 79, 69, 61, 52, 45, 37, 31, 155, 132, 120, 108
OFFSET
1,2
COMMENTS
A permutation of the natural numbers.
Beginning at row 6, the columns obey a 3rd-order recurrence:
c(n)=c(n-1)+c(n-2)-c(n-3)+1.
Except for initial terms, the first seven rows are A028387, A002378, A005563, A028552, A008865, A014209, A028873, and the first column, A004652.
LINKS
FORMULA
Let S(n,k) denote the k-th term in the n-th row. Four cases:
S(1,k)=k^2+k-1
S(2,k)=k^2+k
if n>1 is odd, then S(n,k)=k^2+(n-1)k+(n-1)(n-3)/4
if n>2 is even, then S(n,k)= k^2+(n-1)k+n(n-4)/4.
EXAMPLE
Corner:
1....5...11...19
2....6...12...20
3....8...15...24
4...10...18...28
The double interspersion A161179 begins thus:
1....4....7...12...17...24
2....3....8...11...18...23
5....6...13...16...25...30
9...10...19...22...33...38
Expel the odd-numbered columns and then swap rows 1 and 2, leaving
3....11...23...39
4....12...24...40
6....16...30...48
10...22...38...58
Then replace each of those numbers by its rank when all the numbers are jointly ranked.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jul 24 2009
STATUS
approved