login
A163259
Triangle T(n,k) read by rows: mod(A007318(n,k+1);A007318(n,k)).
2
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 4, 1, 0, 0, 0, 0, 5, 1, 0, 0, 3, 5, 15, 6, 1, 0, 0, 0, 14, 0, 21, 7, 1, 0, 0, 4, 0, 14, 56, 28, 8, 1, 0, 0, 0, 12, 42, 0, 84, 36, 9, 1, 0, 0, 5, 30, 90, 42, 210, 120, 45, 10, 1, 0, 0, 0, 0, 0, 132, 0, 330, 165, 55, 11, 1, 0, 0, 6, 22, 55, 297, 132, 792, 495
OFFSET
1,12
COMMENTS
The zeros in this table form the pattern of ones in A051731.
FORMULA
T(n, k) = mod(binomial(n, k + 1), binomial(n, k)), for 0 <= k <= n, n>= 0. - G. C. Greubel, Dec 12 2016
EXAMPLE
Table begins:
0
0...0
0...1...0
0...0...1...0
0...2...4...1...0
0...0...0...5...1...0
0...3...5..15...6...1...0
0...0..14...0..21...7...1...0
0...4...0..14..56..28...8...1...0
0...0..12..42...0..84..36...9...1...0
0...5..30..90..42.210.120..45..10...1...0
MATHEMATICA
T[n_, k_] := Mod[Binomial[n, k + 1], Binomial[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Dec 12 2016 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, Jul 23 2009
EXTENSIONS
Corrected the formula in the title Mats Granvik, Jul 24 2009
STATUS
approved