login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163191
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n,k)*sigma(n,k) for n>0 with a(0)=1.
3
1, 0, 1, 8, 82, 1024, 15690, 279936, 5771363, 134218240, 3487832978, 100000000000, 3138673052884, 106993205379072, 3937454749863386, 155568096631586816, 6568441588686506948, 295147905179352825856, 14063102470280932000763, 708235345355337676357632
OFFSET
0,4
COMMENTS
Definition: sigma(n,k)= sigma_k(n) = Sum_{d|n} d^k.
FORMULA
a(n) = Sum_{d|n} (d-1)^n for n>0 with a(0)=1.
MATHEMATICA
a[0] = 1; a[n_] := DivisorSum[n, (#-1)^n &]; Array[a, 20, 0] (* Amiram Eldar, Aug 15 2023 *)
PROG
(PARI) {a(n)=if(n==0, 1, sumdiv(n, d, (d-1)^n))}
(PARI) {a(n)=if(n==0, 1, sum(k=0, n, (-1)^(n-k)*binomial(n, k)*sigma(n, k)))}
CROSSREFS
Cf. A163190 (variant), A000203 (sigma).
Sequence in context: A073699 A356829 A358600 * A241708 A317119 A285455
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 22 2009
STATUS
approved