login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163167
a(n) = sum_{d | phi(n)} mu( phi(d) ) * phi(n)/d, where phi = A000010.
2
1, 1, 3, 3, 5, 3, 6, 5, 6, 5, 15, 5, 9, 6, 10, 10, 20, 6, 21, 10, 9, 15, 36, 10, 25, 9, 21, 9, 41, 10, 30, 20, 25, 20, 18, 9, 33, 21, 18, 20, 50, 9, 51, 25, 18, 36, 72, 20, 51, 25, 40, 18, 65, 21, 50, 18, 33, 41, 87, 20, 45, 30, 33, 40, 36, 25, 75, 40, 61, 18, 120, 18, 66, 33, 50, 33
OFFSET
1,3
COMMENTS
Fixed points are in A074701.
LINKS
FORMULA
a(n) = A289627(A000010(n)). - Antti Karttunen, Jul 17 2017
MAPLE
with(numtheory):
A163167:=proc(n)
local div:
div:=convert(divisors(phi(n)), list):
add( mobius(phi(d))*phi(n)/d, d=div) ;
end proc:
seq(A163167(n), n=1..120) ;
MATHEMATICA
Table[Sum[MoebiusMu[EulerPhi[d]] EulerPhi[n]/d, {d, Divisors[EulerPhi[n]]}], {n, 100}] (* Indranil Ghosh, Jul 17 2017 *)
PROG
(PARI) A163167(n) = sumdiv(eulerphi(n), d, moebius(eulerphi(d))*eulerphi(n)/d); \\ Antti Karttunen, Jul 17 2017
(PARI)
A289627(n) = sumdiv(n, d, moebius(eulerphi(d))*n/d);
A163167(n) = A289627(eulerphi(n)); \\ Antti Karttunen, Jul 17 2017
(Python)
from sympy import mobius, totient, divisors
def a(n):
tn = totient(n)
return sum(mobius(totient(d))*tn//d for d in divisors(tn))
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 17 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Jul 22 2009
STATUS
approved