login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163095
a(n) = A000788(n)^2.
1
0, 1, 4, 16, 25, 49, 81, 144, 169, 225, 289, 400, 484, 625, 784, 1024, 1089, 1225, 1369, 1600, 1764, 2025, 2304, 2704, 2916, 3249, 3600, 4096, 4489, 5041, 5625, 6400, 6561, 6889, 7225, 7744, 8100, 8649, 9216, 10000, 10404, 11025, 11664, 12544, 13225
OFFSET
0,3
LINKS
Hsien-Kuei Hwang, S. Janson, T.-H. Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585.
MAPLE
read("transforms") : A000788 := proc(n) add( wt(j), j=0..n) ; end: A163095 := proc(n) A000788(n)^2 ; end: seq(A163095(n), n=0..100) ; # R. J. Mathar, Feb 22 2010
MATHEMATICA
Accumulate@ DigitCount[Range[0, 44], 2, 1]^2 (* Michael De Vlieger, Jan 23 2019 *)
PROG
(Python)
def A163095(n): return sum(i.bit_count() for i in range(1, n+1))**2 # Chai Wah Wu, Mar 02 2023
CROSSREFS
Cf. A000788.
Sequence in context: A235001 A087055 A135556 * A075576 A353295 A363428
KEYWORD
easy,nonn,base
AUTHOR
Omar E. Pol, Aug 06 2009
EXTENSIONS
Extended by R. J. Mathar, Feb 22 2010
STATUS
approved