login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135556
Squares of numbers not divisible by 3: a(n) = A001651(n)^2.
3
1, 4, 16, 25, 49, 64, 100, 121, 169, 196, 256, 289, 361, 400, 484, 529, 625, 676, 784, 841, 961, 1024, 1156, 1225, 1369, 1444, 1600, 1681, 1849, 1936, 2116, 2209, 2401, 2500, 2704, 2809, 3025, 3136, 3364, 3481, 3721, 3844, 4096, 4225, 4489, 4624, 4900
OFFSET
1,2
COMMENTS
From Fermat's Little Theorem all these numbers are congruent to 1 mod 3.
FORMULA
G.f.: -x*(1+3*x+10*x^2+3*x^3+x^4) / ((1+x)^2*(x-1)^3). - R. J. Mathar, Feb 16 2011
From Colin Barker, Jan 26 2016: (Start)
a(n) = (18*n^2-6*(-1)^n*n-18*n+3*(-1)^n+5)/8.
a(n) = (9*n^2-12*n+4)/4 for n even.
a(n) = (9*n^2-6*n+1)/4 for n odd.
(End)
E.g.f.: (1/8)*( (3 + 6*x)*exp(-x) - 8 + (5 + 18*x^2)*exp(x)). - G. C. Greubel, Oct 19 2016
Sum_{n>=1} 1/a(n) = 4*Pi^2/27 (A214549). - Amiram Eldar, Dec 19 2020
MATHEMATICA
LinearRecurrence[{1, 2, -2, -1, 1}, {1, 4, 16, 25, 49}, 25] (* or *) Table[(18*n^2-6*(-1)^n*n-18*n+3*(-1)^n+5)/8, {n, 1, 25}] (* G. C. Greubel, Oct 19 2016 *)
Flatten[Partition[Range[70], 2, 3, {1, 1}, {}]]^2 (* Harvey P. Dale, Jun 19 2018 *)
PROG
(PARI) isok(n) = issquare(n) && (n % 3 == 1); \\ Michel Marcus, Nov 02 2013
(PARI) Vec(-x*(1+3*x+10*x^2+3*x^3+x^4) / ( (1+x)^2*(x-1)^3 ) + O(x^100)) \\ Colin Barker, Jan 26 2016
CROSSREFS
Partial sums of A298028.
Sequence in context: A214937 A235001 A087055 * A163095 A075576 A353295
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Nov 25 2007
STATUS
approved