login
A135558
Sums of three distinct nonzero Fibonacci numbers.
3
6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 76, 77, 78, 79, 81, 84, 89, 90, 91, 92, 93, 94, 95
OFFSET
1,1
COMMENTS
These numbers may have more than one such representation.
LINKS
Colm Mulcahy, Additional Certainties, February 2008.
MAPLE
isA135558 := proc(n) # returns true if n is in the sequence
local xi, yi, x, y, z ;
for xi from 2 do
x := A000045(xi) ;
if 3*x > n then
return false;
end if;
for yi from xi+1 do
y := A000045(yi) ;
if x+2*y > n then
break;
else
z := n-x-y ;
if z >y and isA000045(z) then # see isFib in A000045
return true;
end if;
end if;
end do:
end do:
end proc:
A135558 := proc(n)
option remember;
local a;
if n = 1 then
6;
else
for a from procname(n-1)+1 do
if isA135558(a) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Sep 09 2015
MATHEMATICA
fibs[n_ /; n >= 6] := Reap[Module[{k = 1}, While[Fibonacci[k] < n, Sow[Fibonacci[k++]]]]][[2, 1]];
okQ[n_] := AnyTrue[IntegerPartitions[n, {3}, fibs[n]], Length[Union[#]] == 3&];
Select[Range[6, 100], okQ] (* Jean-François Alcover, Dec 12 2023 *)
CROSSREFS
Cf. A000045, A135709 (Complement).
Sequence in context: A190572 A182619 A210447 * A031951 A043610 A043695
KEYWORD
nonn
AUTHOR
Colm Mulcahy, Feb 23 2008, Mar 02 2008
EXTENSIONS
More terms from N. J. A. Sloane, Mar 01 2008, corrected Mar 05 2008
STATUS
approved