

A162423


Primes whose decimal expansion has the form XYYYX, for nonzero numbers X and Y, where Y is a single digit.


7



13331, 15551, 16661, 19991, 72227, 75557, 76667, 78887, 79997, 1177711, 1333313, 1355513, 1377713, 1399913, 1711117, 1755517, 1766617, 1777717, 1966619, 1977719, 2311123, 2333323, 2922229, 2944429, 2955529, 2977729, 3111131
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There can be no prime whose middle three digits are "000" because it would equal X*(10^Floor[Log[10,X]+1] + 1).  Robert G. Wilson v, Jul 11 2009


LINKS



MATHEMATICA

f[n_] := Block[{len = Floor[ Log[10, n] + 1]}, Select[10^(3 + len) n + 10^len*Table[k (10^3  1)/9, {k, 9}] + n, PrimeQ@# &]]; Array[f, 31] // Flatten (* Robert G. Wilson v, Jul 11 2009 *)
Select[FromDigits/@Flatten[Table[Join[IntegerDigits[x], PadRight[{}, 3, y], IntegerDigits[ x]], {x, 40}, {y, Range[9]}], 1], PrimeQ] (* Harvey P. Dale, Jun 28 2020 *)


PROG

(Magma) m:=3; [p: d in [1..9], n in [1..40 by 2]  IsPrime(p) where p is n*(10^(m+t)+1)+d*10^t*(10^m1) div 9 where t is #Intseq(n)]; // Vincenzo Librandi, Sep 14 2013


CROSSREFS



KEYWORD

nonn,base


AUTHOR



STATUS

approved



