The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283155 Number of set partitions of unique elements from an n X 6 matrix where elements from the same row may not be in the same partition. 3
 1, 13327, 1395857215, 637056434385865, 893591647147188285577, 3104750712141723393459934903, 23094793819000630529788087185212647, 331114050237261411471736187067402011971825, 8452444659410086110360476363825233533247222327537, 361084373753302872550305348321621374196786909194880037375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Indranil Ghosh, Table of n, a(n) for n = 1..50 M. Riedel, Set partitions of unique elements from an n-by-m matrix where elements from the same row may not be in the same partition FORMULA a(n) = m!^n Sum_{p=1..n*m} (Choose(p,m)^n/p!) Sum_{k=0..n*m-p} (-1)^k/k! with m=6. MATHEMATICA Table[(6!^n)*Sum[Binomial[p, 6]^n/p! * Sum[(-1)^k/k!, {k, 0, 6n-p}], {p, 1, 6n}], {n, 1, 10}] (* Indranil Ghosh, Mar 04 2017 *) PROG (PARI) a(n) = (6!^n)*sum(p=1, 6*n, binomial(p, 6)^n/p! * sum(k=0, 6*n-p, (-1)^k/k!)); \\ Indranil Ghosh, Mar 04 2017 CROSSREFS Cf. A283153, A283154. Sequence in context: A251339 A318252 A034625 * A254851 A162423 A176465 Adjacent sequences: A283152 A283153 A283154 * A283156 A283157 A283158 KEYWORD nonn AUTHOR Marko Riedel, Mar 01 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 11:27 EDT 2024. Contains 373570 sequences. (Running on oeis4.)