OFFSET
0,1
COMMENTS
Fourth binomial transform of A162396.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8,-14).
FORMULA
a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 5, a(1) = 22.
G.f.: (5-18*x)/(1-8*x+14*x^2).
MATHEMATICA
LinearRecurrence[{8, -14}, {5, 22}, 50] (* G. C. Greubel, Oct 02 2018 *)
Table[((5+Sqrt[2])(4+Sqrt[2])^n+(5-Sqrt[2])(4-Sqrt[2])^n)/2, {n, 0, 20}]// Simplify (* Harvey P. Dale, May 26 2019 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+r)*(4+r)^n+(5-r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 02 2009
(PARI) x='x+O('x^50); Vec((5-18*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Oct 02 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 02 2009
STATUS
approved