login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162271
a(n) = ((5+sqrt(2))*(4+sqrt(2))^n + (5-sqrt(2))*(4-sqrt(2))^n)/2.
1
5, 22, 106, 540, 2836, 15128, 81320, 438768, 2371664, 12830560, 69441184, 375901632, 2035036480, 11017668992, 59650841216, 322959363840, 1748563133696, 9467073975808, 51256707934720, 277514627816448
OFFSET
0,1
COMMENTS
Fourth binomial transform of A162396.
FORMULA
a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 5, a(1) = 22.
G.f.: (5-18*x)/(1-8*x+14*x^2).
MATHEMATICA
LinearRecurrence[{8, -14}, {5, 22}, 50] (* G. C. Greubel, Oct 02 2018 *)
Table[((5+Sqrt[2])(4+Sqrt[2])^n+(5-Sqrt[2])(4-Sqrt[2])^n)/2, {n, 0, 20}]// Simplify (* Harvey P. Dale, May 26 2019 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+r)*(4+r)^n+(5-r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 02 2009
(PARI) x='x+O('x^50); Vec((5-18*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Oct 02 2018
CROSSREFS
Cf. A162396.
Sequence in context: A373930 A082297 A267241 * A164593 A153789 A213167
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 02 2009
STATUS
approved