login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162274
a(n) = ((2+sqrt(3))*(4+sqrt(3))^n + (2-sqrt(3))*(4-sqrt(3))^n)/2.
2
2, 11, 62, 353, 2018, 11555, 66206, 379433, 2174786, 12465659, 71453054, 409570865, 2347677218, 13456996499, 77136168158, 442148390777, 2534416940162, 14527406441195, 83271831307454, 477318366724097
OFFSET
0,1
COMMENTS
Binomial transform of A162273, inverse binomial transform of A162275.
FORMULA
a(n) = 8*a(n-1) - 13*a(n-2) for n > 1; a(0) = 2, a(1) = 11.
G.f.: (2-5*x)/(1-8*x+13*x^2).
MAPLE
a := proc (n) options operator, arrow; expand((1/2)*(2+sqrt(3))*(4+sqrt(3))^n+(1/2)*(2-sqrt(3))*(4-sqrt(3))^n) end proc: seq(a(n), n = 0 .. 20); # Emeric Deutsch, Jul 09 2009
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-3); S:=[ ((2+r)*(4+r)^n+(2-r)*(4-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 05 2009
CROSSREFS
Sequence in context: A308729 A034726 A256933 * A183160 A020078 A365131
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 05 2009
STATUS
approved