login
A162022
Smallest prime factor of n-th odd composite integers A071904.
4
3, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 5, 3, 3, 5, 3, 3, 7, 3, 5, 3, 7, 3, 5, 3, 3, 3, 5, 3, 7, 11, 3, 5, 3, 7, 3, 3, 11, 5, 3, 3, 5, 3, 7, 3, 13, 3, 5, 3, 3, 5, 11, 3, 3, 3, 7, 5, 3, 11, 3, 5, 7, 3, 13, 3, 3, 5, 3, 3, 5, 13, 3, 11, 3, 7, 3, 5, 3, 3, 5, 3, 3, 7, 17, 3, 5, 3, 13, 7, 3, 5, 3, 3, 11, 3, 17, 5, 3, 7, 3
OFFSET
1,1
COMMENTS
Records are for n's such that A071904(n) = squares of primes.
a(n) = A020639(A071904(n)). [Reinhard Zumkeller, Oct 10 2011]
LINKS
EXAMPLE
A071904(1)=9, hence a(1)=3, A071904(4)=25, hence a(4)=5.
MATHEMATICA
nn=501; With[{ci=Complement[Range[9, nn, 2], Prime[Range[PrimePi[nn]]]]}, FactorInteger[ #][[1, 1]]&/@ci] (* Harvey P. Dale, Nov 30 2012 *)
PROG
(Python)
from sympy import primepi, primefactors
def A162022(n):
if n == 1: return 3
m, k = n, primepi(n) + n + (n>>1)
while m != k:
m, k = k, primepi(k) + n + (k>>1)
return min(primefactors(m)) # Chai Wah Wu, Jul 31 2024
CROSSREFS
Sequence in context: A002373 A236569 A103153 * A318240 A262289 A096918
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 25 2009
EXTENSIONS
Corrected example a(4)=5 Francesco Antoni (francesco_antoni(AT)yahoo.com), Aug 04 2010
STATUS
approved