login
A162019
Double-safe primes which are also double-Sophie Germain primes.
2
11, 359, 719, 214559, 215399, 245639, 253679, 266999, 507359, 508559, 574439, 670919, 744599, 825479, 1017119, 1072199, 1184399, 1363679, 1621079, 1688279, 1786439, 2156039, 2377799, 2429279, 2633399, 2684999, 2900039, 3103799
OFFSET
1,1
COMMENTS
The intersection of the primes in A066179 and those in A007700: they remain prime after each of two successive applications of the substitution p->(p-1)/2, and remain prime after each two successive applications of the substitution p->2p+1.
FORMULA
a(n) = 4*A023302(n) + 3 = (A157359(n)-3)/4. - R. J. Mathar, Jun 26 2009
EXAMPLE
a(1)=11 is double safe: (11-1)/2=5; (5-1)/2=2, and double Sophie-Germain: 2*11+1=23; 2*23+1=47.
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[safe=(p-1)/2], If[PrimeQ[(safe-1)/2], If[PrimeQ[sophie=2*p+1], If[PrimeQ[2*sophie+1], AppendTo[lst, p]]]]], {n, 3*9!}]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by R. J. Mathar, Jun 26 2009
STATUS
approved