The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161983 Irregular triangle read by rows: the group of 2n + 1 integers starting at A014105(n). 5
 0, 3, 4, 5, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 27, 36, 37, 38, 39, 40, 41, 42, 43, 44, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 136, 137 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The squares of numbers in each row can be gathered in an equation with the first n terms on one side, the next n+1 terms on the other. The third row, for example, could be rendered as 10^2 + 11^2 + 12^2 = 13^2 + 14^2. This sequence contains all nonnegative integers that are within a distance of n from 2n^2 + 2n where n is any nonnegative integer. The nonnegative integers that are not in this sequence are of the form 2n^2 + k where n is any positive integer and -n <= k <= n-1. Also, when n is the product of two consecutive integers, a(n) = 2n; for example, a(20) = 40. See explicit formulas for the sequence in the formula section below. - Dennis P. Walsh, Aug 09 2013 Numbers k with the property that the largest Dyck path of the symmetric representation of sigma(k) has a central valley, n > 0. (Cf. A237593.) - Omar E. Pol, Aug 28 2018 LINKS Table of n, a(n) for n=0..65. Michael Boardman, Proof Without Words: Pythagorean Runs, Math. Mag., 73 (2000), 59. FORMULA As a triangle, T(n,k) = 2n^2 + 2n + k where -n <= k <= n and n = 0,1,... - Dennis P. Walsh, Aug 09 2013 As sequence, a(n) = n + floor(sqrt(n))*(floor(sqrt(n)) + 1); equivalently, a(n) = n + A000196(n)*(A000196(n)+1). - Dennis P. Walsh, Aug 09 2013 EXAMPLE Triangle begins: 0; 3, 4, 5; 10, 11, 12, 13, 14; 21, 22, 23, 24, 25, 26, 27; 36, 37, 38, 39, 40, 41, 42, 43, 44; 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65; 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90; ... MAPLE seq(seq(2*n^2+2*n+k, k=-n..n), n=0..10); # Dennis P. Walsh, Aug 09 2013 seq(n+floor(sqrt(n))*(floor(sqrt(n))+1), n=0..100); # Dennis P. Walsh, Aug 09 2013 CROSSREFS Union of A014105 and A317304. The complement is A162917. Column 1 gives A014105. Right border gives A014106. Row sums give the even-indexed terms of A027480. Cf. A000290, A014105, A014106, A027480, A162917, A237593, A317304. Sequence in context: A365578 A014463 A340015 * A047364 A274519 A139445 Adjacent sequences: A161980 A161981 A161982 * A161984 A161985 A161986 KEYWORD nonn,tabf AUTHOR Juri-Stepan Gerasimov, Jun 23 2009 EXTENSIONS Definition clarified, 8th row terms corrected by R. J. Mathar, Jul 19 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 13:29 EDT 2024. Contains 371780 sequences. (Running on oeis4.)