login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161983
Irregular triangle read by rows: the group of 2n + 1 integers starting at A014105(n).
5
0, 3, 4, 5, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 27, 36, 37, 38, 39, 40, 41, 42, 43, 44, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 136, 137
OFFSET
0,2
COMMENTS
The squares of numbers in each row can be gathered in an equation with the first n terms on one side, the next n+1 terms on the other. The third row, for example, could be rendered as 10^2 + 11^2 + 12^2 = 13^2 + 14^2.
This sequence contains all nonnegative integers that are within a distance of n from 2n^2 + 2n where n is any nonnegative integer. The nonnegative integers that are not in this sequence are of the form 2n^2 + k where n is any positive integer and -n <= k <= n-1. Also, when n is the product of two consecutive integers, a(n) = 2n; for example, a(20) = 40. See explicit formulas for the sequence in the formula section below. - Dennis P. Walsh, Aug 09 2013
Numbers k with the property that the largest Dyck path of the symmetric representation of sigma(k) has a central valley, n > 0. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
LINKS
Michael Boardman, Proof Without Words: Pythagorean Runs, Math. Mag., 73 (2000), 59.
FORMULA
As a triangle, T(n,k) = 2n^2 + 2n + k where -n <= k <= n and n = 0,1,... - Dennis P. Walsh, Aug 09 2013
As sequence, a(n) = n + floor(sqrt(n))*(floor(sqrt(n)) + 1); equivalently, a(n) = n + A000196(n)*(A000196(n)+1). - Dennis P. Walsh, Aug 09 2013
EXAMPLE
Triangle begins:
0;
3, 4, 5;
10, 11, 12, 13, 14;
21, 22, 23, 24, 25, 26, 27;
36, 37, 38, 39, 40, 41, 42, 43, 44;
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65;
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90;
...
MAPLE
seq(seq(2*n^2+2*n+k, k=-n..n), n=0..10); # Dennis P. Walsh, Aug 09 2013
seq(n+floor(sqrt(n))*(floor(sqrt(n))+1), n=0..100); # Dennis P. Walsh, Aug 09 2013
CROSSREFS
Union of A014105 and A317304.
The complement is A162917.
Column 1 gives A014105.
Right border gives A014106.
Row sums give the even-indexed terms of A027480.
Sequence in context: A365578 A014463 A340015 * A047364 A274519 A139445
KEYWORD
nonn,tabf
AUTHOR
EXTENSIONS
Definition clarified, 8th row terms corrected by R. J. Mathar, Jul 19 2009
STATUS
approved