login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161846 Numerator of the ratio (prime((n+1)^2) - prime(n^2))/prime(n). 2
5, 16, 6, 44, 54, 76, 84, 108, 122, 120, 166, 182, 184, 234, 192, 260, 264, 294, 304, 342, 378, 342, 408, 426, 414, 468, 488, 474, 516, 576, 588, 576, 604, 590, 696, 694, 728, 694, 756, 828, 774, 776, 870, 862, 852, 1010, 922, 998, 916, 1020, 1032, 1110, 1104 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Note that prime(n^2) = A011757(n) and prime(n) = A000040(n).
Conjecture: the sequence of fractions (prime((n+1)^2) - prime(n^2)) / prime(n) converges to 4. There are several "heuristic demonstrations" but no proofs.
LINKS
FORMULA
a(n) = numerator((A011757(n+1) - A011757(n))/A000040(n)). - Petros Hadjicostas, May 13 2020
EXAMPLE
The first few fractions are 5/2, 16/3, 6/1, 44/7, 54/11, ...= A161846/A161847.
MAPLE
A161846 := proc(n) ( ithprime((n+1)^2)-ithprime(n^2))/ithprime(n) ; numer(%) ; end: seq(A161846(n), n=1..25) ; # R. J. Mathar, Jun 22 2009
MATHEMATICA
Table[(Prime[(n+1)^2]-Prime[n^2])/Prime[n], {n, 60}]//Numerator (* Harvey P. Dale, Oct 24 2017 *)
PROG
(PARI) a(n) = numerator((prime((n+1)^2) - prime(n^2))/prime(n)); \\ Michel Marcus, May 14 2020
CROSSREFS
Cf. A000040, A011757, A161847 (denominators).
Sequence in context: A138074 A174676 A302062 * A069937 A043295 A063927
KEYWORD
nonn,frac
AUTHOR
Daniel Tisdale, Jun 20 2009
EXTENSIONS
Extended by Ray Chandler, May 06 2010
Various sections edited by Petros Hadjicostas, May 13 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 16:28 EDT 2024. Contains 374475 sequences. (Running on oeis4.)