The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161846 Numerator of the ratio (prime((n+1)^2) - prime(n^2))/prime(n). 2
 5, 16, 6, 44, 54, 76, 84, 108, 122, 120, 166, 182, 184, 234, 192, 260, 264, 294, 304, 342, 378, 342, 408, 426, 414, 468, 488, 474, 516, 576, 588, 576, 604, 590, 696, 694, 728, 694, 756, 828, 774, 776, 870, 862, 852, 1010, 922, 998, 916, 1020, 1032, 1110, 1104 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Note that prime(n^2) = A011757(n) and prime(n) = A000040(n). Conjecture: the sequence of fractions (prime((n+1)^2) - prime(n^2)) / prime(n) converges to 4. There are several "heuristic demonstrations" but no proofs. LINKS Table of n, a(n) for n=1..53. FORMULA a(n) = numerator((A011757(n+1) - A011757(n))/A000040(n)). - Petros Hadjicostas, May 13 2020 EXAMPLE The first few fractions are 5/2, 16/3, 6/1, 44/7, 54/11, ...= A161846/A161847. MAPLE A161846 := proc(n) ( ithprime((n+1)^2)-ithprime(n^2))/ithprime(n) ; numer(%) ; end: seq(A161846(n), n=1..25) ; # R. J. Mathar, Jun 22 2009 MATHEMATICA Table[(Prime[(n+1)^2]-Prime[n^2])/Prime[n], {n, 60}]//Numerator (* Harvey P. Dale, Oct 24 2017 *) PROG (PARI) a(n) = numerator((prime((n+1)^2) - prime(n^2))/prime(n)); \\ Michel Marcus, May 14 2020 CROSSREFS Cf. A000040, A011757, A161847 (denominators). Sequence in context: A138074 A174676 A302062 * A069937 A043295 A063927 Adjacent sequences: A161843 A161844 A161845 * A161847 A161848 A161849 KEYWORD nonn,frac AUTHOR Daniel Tisdale, Jun 20 2009 EXTENSIONS Extended by Ray Chandler, May 06 2010 Various sections edited by Petros Hadjicostas, May 13 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 16:28 EDT 2024. Contains 374475 sequences. (Running on oeis4.)