login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161665
Primes that can be represented as a sum of 2 and also as a sum of 3 distinct nonzero squares, sharing a term in the sums.
0
29, 101, 109, 149, 173, 181, 229, 233, 241, 269, 293, 389, 401, 409, 421, 433, 449, 521, 569, 641, 661, 677, 701, 757, 761, 769, 797, 821, 857, 877, 881, 941, 1021, 1069, 1097, 1109, 1117, 1181, 1229, 1237, 1277, 1289, 1301, 1373, 1381, 1429, 1433, 1481, 1549
OFFSET
1,1
COMMENTS
Dropping the requirement of one shared term, we would get the supersequence 17, 29, 41, 53, 61, 73, ... - R. J. Mathar, Oct 04 2009
EXAMPLE
The prime 29 has the representations 29 = 2^2+ 5^2 = 2^2+3^2+4^2, sharing 2^2.
The prime 101 has the representations 101 = 1^2+10^2 = 1^2+6^2+8^2, sharing 1^2.
The prime 109 has the representations 109 = 3^2+10^2 = 3^2+6^2+8^2, sharing 3^2.
The prime 149 has the representations 149 = 7^2+10^2 = 6^2+7^2+8^2, sharing 7^2.
MATHEMATICA
f[n_]:=Module[{k=1}, While[(n-k^2)^(1/2)!=IntegerPart[(n-k^2)^(1/2)], k++; If[2*k^2>=n, k=0; Break[]]]; k]; lst={}; Do[a=f[n]; If[a>0, b=f[n-(f[n])^2]; If[b>0, c=(n-a^2-b^2)^(1/2); If[a!=b&&a!=c, If[PrimeQ[n], AppendTo[lst, n]]]]], {n, 3, 4*6!}]; lst
CROSSREFS
Sequence in context: A092373 A240954 A087641 * A127464 A318959 A142109
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition reverse-engineered from program by R. J. Mathar, Oct 04 2009
STATUS
approved