login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161517
Sum of remainders of c mod k where k = 1, 2, 3, ..., c and c is the n-th composite number.
2
1, 3, 8, 12, 13, 17, 31, 36, 36, 47, 61, 70, 77, 85, 103, 112, 125, 124, 138, 167, 184, 197, 218, 198, 248, 269, 258, 284, 328, 339, 358, 374, 414, 420, 449, 454, 492, 529, 520, 553, 578, 586, 672, 693, 693, 738, 725, 799, 840, 835, 852, 956, 981, 992, 1049, 1036
OFFSET
1,2
LINKS
FORMULA
a(n) = (c mod (c-1)) + (c mod (c-2)) + ... + (c mod 3) + (c mod 2).
EXAMPLE
a(1) = 1 (= (4 mod 3) + 0);
a(2) = 3 (= (6 mod 5) + (6 mod 4) + 0 + 0);
a(3) = 8 (= (8 mod 7) + (8 mod 6) + (8 mod 5) + 0 + (8 mod 3) + 0), etc.
MAPLE
A002808 := proc(n) local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) ; end if; end do; end if; end proc: A004125 := proc(n) add( n mod k, k=1..n) ; end: A161517 := proc(n) local c; A004125( A002808(n)) ; end: seq(A161517(n), n=1..80) ; # R. J. Mathar, Aug 03 2009
MATHEMATICA
With[{cmps=Select[Range[200], CompositeQ]}, Table[Total[Mod[n, Range[n-1]]], {n, cmps}]] (* Harvey P. Dale, Apr 09 2023 *)
PROG
(PARI) a(n)=my(c=n+n\log(n+1)); for(i=0, n-c+primepi(c), if(isprime(c++), i--)); sum(k=2, c, c%k) \\ Charles R Greathouse IV, Oct 12 2009
CROSSREFS
Sequence in context: A361044 A288865 A331069 * A255199 A280239 A344345
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Corrected and extended by R. J. Mathar, Aug 03 2009
STATUS
approved