OFFSET
2,2
COMMENTS
Obviously C(p) = 1/(p-1) for all primes p.
LINKS
Robert Israel, Table of n, a(n) for n = 2..10000
Project Euler, Problem 245: resilient fractions, May 2009
EXAMPLE
a(10)=3 since for n=10, we have (n - phi(n))/(n-1) = (10-4)/9 = 2/3.
MAPLE
seq(denom((n-numtheory:-phi(n))/(n-1)), n=2..100); # Robert Israel, Dec 26 2016
MATHEMATICA
Denominator[Table[(n - EulerPhi[n])/(n - 1), {n, 2, 20}]] (* G. C. Greubel, Dec 26 2016 *)
PROG
(PARI) A160597(n)=denominator((n-eulerphi(n))/(n-1))
(Magma) [Denominator((n-EulerPhi(n))/(n-1)): n in [2..80]]; // Vincenzo Librandi, Dec 27 2016
CROSSREFS
KEYWORD
AUTHOR
M. F. Hasler, May 23 2009
STATUS
approved