

A160510


Decimal expansion of exp(Pi/4).


2



2, 1, 9, 3, 2, 8, 0, 0, 5, 0, 7, 3, 8, 0, 1, 5, 4, 5, 6, 5, 5, 9, 7, 6, 9, 6, 5, 9, 2, 7, 8, 7, 3, 8, 2, 2, 3, 4, 6, 1, 6, 3, 7, 6, 4, 1, 9, 9, 4, 2, 7, 2, 3, 3, 4, 8, 5, 8, 0, 1, 5, 9, 1, 8, 6, 5, 7, 0, 2, 6, 8, 6, 4, 1, 8, 9, 2, 3, 6, 9, 3, 4, 1, 2, 6, 5, 2, 2, 8, 1, 2, 5, 7, 8, 1, 6, 9, 4, 0, 4, 7, 1, 1, 6, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Identified by Knuth as one of those "quantities that are frequently used in standard subroutines and in analysis of computer programs."  Alonso del Arte, Feb 03 2012


REFERENCES

D. E. Knuth, The Art Of Computer Programming, Vol 1: Fundamental Algorithms, AddisonWesley, 1968.


LINKS

Table of n, a(n) for n=1..105.
Greg Egan, Puzzle in which this value arises naturally
Grant Sanderson and Brady Haran, Darts in Higher Dimensions, Numberphile video (2019)


EXAMPLE

Exp(Pi/4) = 2.1932800507380154565597696592787382234616+ according to Knuth, appendix B, table 1.


MAPLE

evalf(exp(Pi/4), 125); # Alois P. Heinz, Nov 17 2019


MATHEMATICA

RealDigits[ E^(Pi/4), 10, 111][[1]] (* Robert G. Wilson v, May 29 2009 *)


PROG

(PARI) exp(Pi/4) \\ Charles R Greathouse IV, Jan 04 2016


CROSSREFS

Cf. A000796, A320428 (continued fraction), A329912 (Engel expansion).
Sequence in context: A021460 A090884 A095888 * A298738 A124776 A099285
Adjacent sequences: A160507 A160508 A160509 * A160511 A160512 A160513


KEYWORD

cons,nonn


AUTHOR

Hagen von Eitzen, May 16 2009


EXTENSIONS

More terms from Robert G. Wilson v, May 29 2009


STATUS

approved



