login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160305
Numerator of Hermite(n, 7/31).
1
1, 14, -1726, -77980, 8860396, 723555784, -75018624584, -9394306045264, 877780290519440, 156735773819251424, -12989542631935753184, -3194315169653112913856, 229904497949242113022144, 76892348044168785827484800, -4667900913141400434386502784
OFFSET
0,2
LINKS
FORMULA
a(n+2) = 14*a(n+1) - 1922*(n+1)*a(n). - Bruno Berselli, Mar 28 2018
From G. C. Greubel, Oct 04 2018: (Start)
a(n) = 31^n * Hermite(n, 7/31).
E.g.f.: exp(14*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(14/31)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 14/31, -1726/961, -77980/29791, 8860396/923521, ...
MATHEMATICA
Numerator[HermiteH[Range[0, 20], 7/31]] (* Harvey P. Dale, Apr 23 2016 *)
Table[31^n*HermiteH[n, 7/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 7/31)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(14*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
(Maxima) makelist(num(hermite(n, 7/31)), n, 0, 20); /* Bruno Berselli, Mar 28 2018 */
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(14/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
CROSSREFS
Cf. A009975 (denominators).
Sequence in context: A322848 A206644 A060614 * A279804 A198601 A233076
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved