login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160303
Numerator of Hermite(n, 5/31).
1
1, 10, -1822, -56660, 9939052, 534992600, -90164363720, -7071178300400, 1142359566484880, 120150033211799200, -18559035448937462240, -2494873992820155246400, 367426387533234274214080, 61216037645736403345110400, -8568355342448027542061898880
OFFSET
0,2
LINKS
FORMULA
a(n+2) = 10*a(n+1) - 1922*(n+1)*a(n). - Bruno Berselli, Mar 28 2018
From G. C. Greubel, Oct 04 2018: (Start)
a(n) = 31^n * Hermite(n, 5/31).
E.g.f.: exp(10*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(10/31)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 10/31, -1822/961, -56660/29791, 9939052/923521, ...
MATHEMATICA
Numerator/@HermiteH[Range[0, 20], 5/31] (* Harvey P. Dale, May 14 2011 *)
Table[31^n*HermiteH[n, 5/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 5/31)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(10*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
(Maxima) makelist(num(hermite(n, 5/31)), n, 0, 20); /* Bruno Berselli, Mar 28 2018 */
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(10/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
CROSSREFS
Cf. A009975 (denominators).
Sequence in context: A211915 A182326 A370310 * A336666 A024138 A261603
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved