login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A160145
a(n) = the odd number 2n+1 minus the numerator of (2n+1)/(2^(2n+1)-1).
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 0, 0, 0, 150
OFFSET
0,11
COMMENTS
Explains the similarity of the sequences A009843 and A160143. (Cf. also the pair A036279 and A156769.) The first nonzero values occur at n = 10, 31, 52 and 73.
Previous name was: Odd numbers 2n+1 minus the numerators of (2n+1)/(4^(2n+1)-2^(2n+1)), (A005408 - A160144). - Altug Alkan, Apr 21 2018
FORMULA
a(n) = A005408(n) - A160144(n).
MAPLE
seq((2*n+1)-numer((2*n+1)/(4^(2*n+1)-2^(2*n+1))), n=0..77);
seq((2*n+1)-numer((2*n+1)/(2^(2*n+1)-1)), n=0..100); # Altug Alkan, Apr 21 2018
MATHEMATICA
Array[# - Numerator[#/(2^# - 1)] &[2 # + 1] &, 78, 0] (* Michael De Vlieger, Apr 21 2018 *)
PROG
(PARI) forstep(k=1, 1e2, 2, print1(k - numerator(k/(2^k-1)), ", ")); \\ Altug Alkan, Apr 21 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, May 03 2009
EXTENSIONS
Name simplified by Altug Alkan, Apr 21 2018
STATUS
approved