login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072839
Expansion of F_9(q^2).
2
1, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 72, 0, 0, 0, 240, 0, 252, 0, 0, 0, 0, 0, 504, 0, 0, 0, 0, 0, 1026, 0, 0, 0, 2160, 0, 1512, 0, 0, 0, 0, 0, 2664, 0, 0, 0, 0, 0, 3528, 0, 0, 0, 6720, 0, 5616, 0, 0, 0, 0, 0, 6552, 0, 0, 0, 0, 0, 9828, 0, 0, 0, 17520, 0, 11232, 0, 0, 0, 0, 0, 16380, 0, 0
OFFSET
0,9
COMMENTS
Theta series of {A_8}* lattice. - Andy Huchala, Jul 01 2021
LINKS
S. Ahlgren, The sixth, eighth, ninth and tenth powers of Ramanujan's theta function, Proc. Amer. Math. Soc. 128 (2000), 1333-1338.
K. S. Chua. The Root Lattice An* and Ramanujan's Circular Summation of Theta Functions, Proceedings of the American Mathematical Society, 130 (2001), 1-8.
MATHEMATICA
f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; CoefficientList[Series[f[q^9, q^9]^8 - 16*q^9*f[q^9, q^27]^8 + 256*q^18*f[q^18, q^54]^8 + 18*q^8*f[q^18, -q^36]^12/f[q^6, -q^12]^4, {q, 0, 100}], q] (* G. C. Greubel, Apr 15 2018 *)
PROG
(Magma)
L := Dual(Lattice("A", 8));
T<q> := ThetaSeries(L, 32); Coefficients(T); // Andy Huchala, Jul 01 2021
CROSSREFS
Cf. A008448 (dual), A072835.
A023920 aerated with 0's.
Sequence in context: A210709 A187567 A160145 * A156400 A008424 A023920
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 25 2002
STATUS
approved