OFFSET
1,1
COMMENTS
All terms are of form 9k+4. - Zak Seidov, Jun 04 2010
All numbers of the form 5500*10^k - 87, k >= 1 are terms, i.e., 54 followed by k 9's followed by a 13: 54913, 549913, 5499913, etc. - Enrico Munini, Feb 21 2023
REFERENCES
Boris A. Kordemsky, The Moscow Puzzles, p. 165 (1972).
LINKS
Paolo P. Lava, Table of n, a(n) for n = 1..1000 (first 519 terms from Zak Seidov)
EXAMPLE
913 is included because 913^2 = 833569, 914^2 = 835396 and both 833569 and 835396 contain exactly the same set of digits.
MATHEMATICA
okQ[n_] := Module[{idn = IntegerDigits[n^2]}, Sort[idn] == Sort[ IntegerDigits[ (n + 1)^2]]]; Select[Range[100000], okQ]
SequencePosition[Table[FromDigits[Sort[IntegerDigits[n^2]]], {n, 130000}], {x_, x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 09 2020 *)
PROG
(PARI) isok(n) = vecsort(digits(n^2)) == vecsort(digits((n+1)^2)); \\ Michel Marcus, Sep 30 2016
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Harvey P. Dale, Aug 09 2002
EXTENSIONS
Terms from 100147 onward from N. J. A. Sloane, May 24 2010
STATUS
approved