1,1
Table of n, a(n) for n=1..44.
436^2 = 190096 and 437^2 = 190969 consist of the same digits (although not with the same multiplicities).
Select[Range[10000], Union[IntegerDigits[ #^2]] == Union[IntegerDigits[(# + 1)^2]] &]
(PARI) isok(n) = Set(digits(n^2)) == Set(digits((n+1)^2)); \\ Michel Marcus, Oct 06 2018
The sequence A072841 (digits of k^2 are exactly the same (albeit in different order) as the digits of (k+1)^2) is a subsequence of this sequence.
Sequence in context: A250210 A142104 A140020 * A154414 A164623 A072841
Adjacent sequences: A130865 A130866 A130867 * A130869 A130870 A130871
base,nonn
Tanya Khovanova, Jul 23 2007
approved