login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160131
Numerator of Hermite(n, 8/27).
1
1, 16, -1202, -65888, 4203340, 451512256, -23418152504, -4324519655552, 169813349966992, 53158210861830400, -1377759404477582624, -797090864837128553984, 9343051491617413259968, 14095390595056279792663552, 48438051548784025753183360, -286940104001508238715797489664
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Sep 24 2018: (Start)
a(n) = 27^n * Hermite(n, 8/27).
E.g.f.: exp(16*x - 729*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(16/27)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 16/27, -1202/729, -65888/19683, 4203340/531441, ...
MATHEMATICA
Table[27^n*HermiteH[n, 8/27], {n, 0, 30}] (* G. C. Greubel, Sep 24 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 8/27)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(16*x - 729*x^2))) \\ G. C. Greubel, Sep 24 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(16/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 24 2018
CROSSREFS
Cf. A009971 (denominators).
Sequence in context: A254333 A102807 A373453 * A206691 A064346 A222888
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved