login
A160129
a(n) = least prime p such that both p-+6*n are prime.
1
11, 17, 23, 29, 37, 43, 47, 53, 59, 67, 71, 79, 89, 89, 101, 101, 109, 131, 127, 131, 131, 137, 179, 149, 157, 193, 191, 179, 179, 193, 193, 197, 211, 227, 223, 223, 227, 233, 257, 251, 257, 257, 263, 277, 277, 281, 311, 311, 307, 307, 311, 331, 359, 337, 347
OFFSET
1,1
COMMENTS
Sequence is not monotonic. For instance, a(17) = 109, a(18) = 131, a(19) = 127.
FORMULA
11 and 11-+1*6 are prime, 17 and 17-+2*6 are prime, 23 and 23-+3*6 are prime.
MATHEMATICA
lp[n_]:=Module[{p=NextPrime[6n]}, While[Total[Boole[PrimeQ[p+6{n, -n}]]] != 2, p = NextPrime[p]]; p]; Array[lp, 60] (* Harvey P. Dale, Mar 02 2023 *)
PROG
(PARI) a(n) = {p = nextprime(6*n); while (!isprime(p+6*n) || !isprime(p-6*n), p = nextprime(p+1)); p; } \\ Michel Marcus, Oct 15 2013
CROSSREFS
Sequence in context: A209624 A243153 A280326 * A275682 A265402 A145481
KEYWORD
nonn
AUTHOR
Zak Seidov, May 02 2009
EXTENSIONS
Comment simplified by Michel Marcus, Oct 15 2013
STATUS
approved