login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160083
Numerator of Hermite(n, 23/26).
1
1, 23, 191, -11155, -450239, 4726063, 869603359, 10416421493, -1817903853055, -69977792337337, 3920574297234559, 326698146936593917, -7062637857576430271, -1487528354699082823585, -3179921411888070331681, 6965845981962634303575557, 176336659143413105563860481
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Sep 23 2018: (Start)
a(n) = 13^n * Hermite(n, 23/26).
E.g.f.: exp(23*x - 169*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(23/13)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 23/13, 191/169, -11155/2197, -450239/28561
MATHEMATICA
HermiteH[Range[0, 20], 23/26]//Numerator (* Harvey P. Dale, Jul 15 2017 *)
Table[13^n*HermiteH[n, 23/26], {n, 0, 30}] (* G. C. Greubel, Sep 23 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 23/26)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(23*x - 169*x^2))) \\ G. C. Greubel, Sep 23 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(23/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 23 2018
CROSSREFS
Cf. A001022 (denominators).
Sequence in context: A201859 A232150 A269086 * A140545 A062640 A108646
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved