login
A160041
Positive numbers y such that y^2 is of the form x^2+(x+73)^2 with integer x.
4
53, 73, 125, 193, 365, 697, 1105, 2117, 4057, 6437, 12337, 23645, 37517, 71905, 137813, 218665, 419093, 803233, 1274473, 2442653, 4681585, 7428173, 14236825, 27286277, 43294565, 82978297, 159036077, 252339217, 483632957, 926930185
OFFSET
1,1
COMMENTS
(-28, a(1)) and (A129289(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+73)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (89+36*sqrt(2))/73 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (5907+1802*sqrt(2))/73^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=53, a(2)=73, a(3)=125, a(4)=193, a(5)=365, a(6)=697.
G.f.: (1-x)*(53 +126*x +251*x^2 +126*x^3 +53*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 73*A001653(k) for k >= 1.
EXAMPLE
(-28, a(1)) = (-28, 53) is a solution: (-28)^2+(-28+73)^2 = 784+2025 = 2809 = 53^2.
(A129289(1), a(2)) = (0, 73) is a solution: 0^2+(0+73)^2 = 5329 = 73^2.
(A129289(3), a(4)) = (95, 193) is a solution: 95^2+(95+73)^2 = 9025+28224 = 37249 = 193^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {53, 73, 125, 193, 365, 697}, 50] (* G. C. Greubel, Apr 21 2018 *)
PROG
(PARI) {forstep(n=-28, 10000000, [3, 1], if(issquare(2*n^2+146*n+5329, &k), print1(k, ", ")))}
(PARI) x='x+O('x^30); Vec((1-x)*(53 +126*x +251*x^2 +126*x^3 +53*x^4)/(1 -6*x^3+x^6)) \\ G. C. Greubel, Apr 21 2018
(Magma) I:=[53, 73, 125, 193, 365, 697]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 21 2018
CROSSREFS
Cf. A129289, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160042 (decimal expansion of (89+36*sqrt(2))/73), A160043 (decimal expansion of (5907+1802*sqrt(2))/73^2).
Sequence in context: A136073 A133187 A057667 * A013538 A107309 A039389
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, May 04 2009
STATUS
approved