login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160041 Positive numbers y such that y^2 is of the form x^2+(x+73)^2 with integer x. 4
53, 73, 125, 193, 365, 697, 1105, 2117, 4057, 6437, 12337, 23645, 37517, 71905, 137813, 218665, 419093, 803233, 1274473, 2442653, 4681585, 7428173, 14236825, 27286277, 43294565, 82978297, 159036077, 252339217, 483632957, 926930185 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

(-28, a(1)) and (A129289(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+73)^2 = y^2.

lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).

lim_{n -> infinity} a(n)/a(n-1) = (89+36*sqrt(2))/73 for n mod 3 = {0, 2}.

lim_{n -> infinity} a(n)/a(n-1) = (5907+1802*sqrt(2))/73^2 for n mod 3 = 1.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).

FORMULA

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=53, a(2)=73, a(3)=125, a(4)=193, a(5)=365, a(6)=697.

G.f.: (1-x)*(53 +126*x +251*x^2 +126*x^3 +53*x^4)/(1-6*x^3+x^6).

a(3*k-1) = 73*A001653(k) for k >= 1.

EXAMPLE

(-28, a(1)) = (-28, 53) is a solution: (-28)^2+(-28+73)^2 = 784+2025 = 2809 = 53^2.

(A129289(1), a(2)) = (0, 73) is a solution: 0^2+(0+73)^2 = 5329 = 73^2.

(A129289(3), a(4)) = (95, 193) is a solution: 95^2+(95+73)^2 = 9025+28224 = 37249 = 193^2.

MATHEMATICA

LinearRecurrence[{0, 0, 6, 0, 0, -1}, {53, 73, 125, 193, 365, 697}, 50] (* G. C. Greubel, Apr 21 2018 *)

PROG

(PARI) {forstep(n=-28, 10000000, [3, 1], if(issquare(2*n^2+146*n+5329, &k), print1(k, ", ")))}

(PARI) x='x+O('x^30); Vec((1-x)*(53 +126*x +251*x^2 +126*x^3 +53*x^4)/(1 -6*x^3+x^6)) \\ G. C. Greubel, Apr 21 2018

(MAGMA) I:=[53, 73, 125, 193, 365, 697]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 21 2018

CROSSREFS

Cf. A129289, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160042 (decimal expansion of (89+36*sqrt(2))/73), A160043 (decimal expansion of (5907+1802*sqrt(2))/73^2).

Sequence in context: A136073 A133187 A057667 * A013538 A107309 A039389

Adjacent sequences:  A160038 A160039 A160040 * A160042 A160043 A160044

KEYWORD

nonn

AUTHOR

Klaus Brockhaus, May 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 09:25 EST 2019. Contains 329791 sequences. (Running on oeis4.)