login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159753 Numerator of Hermite(n, 10/21). 1
1, 20, -482, -44920, 376972, 166017200, 1657897480, -845405072800, -27143960497520, 5422298983726400, 323914738103841760, -41346382274390012800, -3969548434571273011520, 358219141300718435244800, 52679225176808585054984320, -3369705453245099537303104000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..390

FORMULA

From G. C. Greubel, Jul 14 2018: (Start)

a(n) = 21^n * Hermite(n, 10/21).

E.g.f.: exp(20*x - 441*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(20/21)^(n-2*k)/(k!*(n-2*k)!)). (End)

MATHEMATICA

Numerator[Table[HermiteH[n, 10/21], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)

Table[21^n*HermiteH[n, 10/21], {n, 0, 30}] (* G. C. Greubel, Jul 14 2018 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 10/21)) \\ Charles R Greathouse IV, Jan 29 2016

(PARI) x='x+O('x^30); Vec(serlaplace(exp(20*x - 441*x^2))) \\ G. C. Greubel, Jul 14 2018

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(20/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018

CROSSREFS

Cf. A009965 (denominators)

Sequence in context: A268884 A324069 A065412 * A252975 A000827 A241261

Adjacent sequences:  A159750 A159751 A159752 * A159754 A159755 A159756

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 11:28 EDT 2019. Contains 325180 sequences. (Running on oeis4.)