login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159565
Positive numbers y such that y^2 is of the form x^2+(x+241)^2 with integer x.
3
221, 241, 265, 1061, 1205, 1369, 6145, 6989, 7949, 35809, 40729, 46325, 208709, 237385, 270001, 1216445, 1383581, 1573681, 7089961, 8064101, 9172085, 41323321, 47001025, 53458829, 240849965, 273942049, 311580889, 1403776469, 1596651269
OFFSET
1,1
COMMENTS
(-21,a(1)) and (A129991(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+241)^2 = y^2.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=221, a(2)=241, a(3)=265, a(4)=1061, a(5)=1205, a(6)=1369.
G.f.: x*(1-x)*(221+462*x+727*x^2+462*x^3+221*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 241*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (243+22*sqrt(2))/241 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (137283+87958*sqrt(2))/241^2 for n mod 3 = 1.
EXAMPLE
(-21, a(1)) = (-21, 221) is a solution: (-21)^2+(-21+241)^2 = 441+48400 = 48841 = 221^2.
(A129993(1), a(2)) = (0, 241) is a solution: 0^2+(0+241)^2 = 58081= 241^2.
(A129993(3), a(4)) = (620, 1061) is a solution: 620^2+(620+241)^2 = 384400+741321 = 1125721 = 1061^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {221, 241, 265, 1061, 1205, 1369}, 30] (* Harvey P. Dale, Nov 21 2011 *)
PROG
(PARI) {forstep(n=-24, 50000000, [3, 1], if(issquare(2*n^2+482*n+58081, &k), print1(k, ", ")))}
CROSSREFS
Cf. A129991, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159566 (decimal expansion of (243+22*sqrt(2))/241), A159567 (decimal expansion of (137283+87958*sqrt(2))/241^2).
Sequence in context: A339680 A266237 A371899 * A330281 A345512 A048931
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Apr 16 2009
STATUS
approved