|
|
A159563
|
|
Numerator of Hermite(n, 17/18).
|
|
2
|
|
|
1, 17, 127, -3349, -118655, 153017, 98711839, 1529368739, -85939956863, -3443041152415, 66768757515199, 6712795544670683, -4864401632683007, -13132369366595418871, -213005849393691708065, 26163114283745650962323, 962377156850346916957441
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..450
|
|
FORMULA
|
From G. C. Greubel, Jun 02 2018: (Start)
a(n) = 9^n * Hermite(n, 17/18).
E.g.f.: exp(17*x - 81*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(17/9)^(n-2*k)/(k!*(n-2*k)!)). (End)
|
|
MATHEMATICA
|
Numerator[Table[HermiteH[n, 17/18], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, May 20 2011 *)
Table[9^n*HermiteH[n, 17/18], {n, 0, 50}] (* G. C. Greubel, Jul 10 2018 *)
|
|
PROG
|
(PARI) a(n)=numerator(polhermite(n, 17/18)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(17/9)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 10 2018
|
|
CROSSREFS
|
Cf. A159545, A159546.
Sequence in context: A298838 A114756 A336186 * A341397 A229516 A352114
Adjacent sequences: A159560 A159561 A159562 * A159564 A159565 A159566
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
N. J. A. Sloane, Nov 12 2009
|
|
STATUS
|
approved
|
|
|
|