login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159515
Numerator of Hermite(n, 4/15).
3
1, 8, -386, -10288, 438796, 22028768, -811060856, -65966160448, 2027112412816, 253695076915328, -6180244656582176, -1191069803371633408, 21063652623108703936, 6600286159191690034688, -70420078571652397748096, -42145163431480866400519168, 138174222906806753595494656
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jun 11 2018: (Start)
a(n) = 15^n * Hermite(n,4/15).
E.g.f.: exp(8*x-225*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/15)^(n-2*k)/(k!*(n-2*k)!)). (End)
MATHEMATICA
Numerator[Table[HermiteH[n, 4/15], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2011 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 4/15)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(8/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 11 2018
CROSSREFS
Sequence in context: A151941 A085806 A042115 * A369770 A220799 A220785
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved