login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159514
Numerator of Hermite(n, 2/15).
4
1, 4, -434, -5336, 564556, 11863024, -1222798904, -36921360416, 3704131105936, 147733421921344, -14410797291355424, -722443587811469696, 68443672240963470016, 4174970063145790238464, -383695602357053138639744, -27837093807246691056882176, 2478596940681121921590743296
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jun 11 2018: (Start)
a(n) = 15^n * Hermite(n,2/15).
E.g.f.: exp(4*x-225*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/15)^(n-2*k)/(k!*(n-2*k)!)). (End)
MATHEMATICA
Numerator[Table[HermiteH[n, 2/15], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2011 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 2/15)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(4/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 11 2018
CROSSREFS
Cf. A159513.
Sequence in context: A172858 A125760 A053780 * A217269 A034985 A262102
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved