login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159200
Decimal expansion of Sum_{k >= 1} (1/(10^(4*k + 2) - 1)) - (1/(10^(2*k + 1) - 1)), negated.
1
0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 3, 0, 3, 0, 1, 0, 3, 0, 1, 0, 1, 0, 5, 0, 1, 0, 2, 0, 3, 0, 1, 0, 3, 0, 3, 0, 1, 0, 1, 0, 5, 0, 3, 0, 1, 0, 3, 0, 1, 0, 1, 0, 5, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 3, 0, 1, 0, 3, 0, 3, 0, 3, 0, 1, 0, 5, 0
OFFSET
0,9
COMMENTS
It equals Sum_{k >= 1} 1/((2^(4*k + 2)*5^(4*k + 2)) - 1) - 1/((2^(2*k + 1)*5^(2*k + 1)) - 1).
Note that Sum_{k >= 1} (1/(10^k - 1)) / Sum_{k >= 1} ((1/(10^(4*k + 2) - 1)) -(1/(10^(2*k + 1) - 1))) = A073668 / Sum_{k >= 1} ((1/(10^(4*k + 2) - 1)) - (1/(10^(2*k + 1) - 1))) = -121.100.
My idea for this decimal expansion came from the Engel expansion of e - 1, i.e., A000027(n) = n, and the Engel expansion of e^(-1), i.e., A059193(n) = 2*(2*n + 1)*(n - 1), which I have transformed into (2*n + 1)^2 - (6*n + 3) (since 2*(2*n + 1)*(n - 1) = (2*n + 1)^2 - (6*n + 3)). It appears that the Engel expansion of 1/e works like a Sundaram sieve.
Decimal expansion of Sum_{n>=0} (d(2*n+1) - 1)/(10^(2*n+1) - 1), where d = A000005. - Jianing Song, Apr 12 2021
LINKS
Eric Weisstein's World of Mathematics, Engel expansion.
English Wikipedia, Sieve of Sundaram.
French Wikipedia, Crible de Sundaram.
EXAMPLE
-0.00101010201010301010301020301010303010301010501020301030301...
PROG
(PARI) suminf(k=1, 1/(10^(4*k + 2) - 1) - 1/(10^(2*k + 1) - 1)) \\ Michel Marcus, Jun 25 2019
CROSSREFS
Sequence in context: A284413 A323879 A129308 * A338021 A318721 A219201
KEYWORD
cons,nonn
AUTHOR
Eric Desbiaux, Apr 06 2009
EXTENSIONS
Comments edited by Petros Hadjicostas, Jun 19 2019
STATUS
approved