The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158909 Riordan array (1/((1-x)(1-x^2)), x/(1-x)^2). Triangle read by rows, T(n,k) for 0 <= k <= n. 5
 1, 1, 1, 2, 3, 1, 2, 7, 5, 1, 3, 13, 16, 7, 1, 3, 22, 40, 29, 9, 1, 4, 34, 86, 91, 46, 11, 1, 4, 50, 166, 239, 174, 67, 13, 1, 5, 70, 296, 553, 541, 297, 92, 15, 1, 5, 95, 496, 1163, 1461, 1068, 468, 121, 17, 1, 6, 125, 791, 2269, 3544, 3300, 1912, 695, 154, 19, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Diagonal sums are the Jacobsthal numbers A001045. Transforms r^n into the symmetric third-order sequence with g.f. 1/(1-(r+1)x-(r+1)x^2+x^3), see the formulas. From Wolfdieter Lang, Oct 22 2019: (Start) The signed triangle t(n, k) = (-1)^(n-k)*T(n, k) appears in the expansion [n+2, 2]_q / q^n = Sum_{k=0} t(n, k)*y^(2*k), with y = q^(1/2) + q^(-1/2), where [n+2, 2]_q are q-binomial coefficients (see A008967, but with a different offset). The formula is [n+2, 2]_q / q^n = S(n+1, y)*S(n, y)/y with Chebyshev S polynomials (A049310). This is a polynomial in y^2 but not in q after replacement of the given y = y(q). The A-sequence for this Riordan triangle is A(n) = (-1)^n*A115141(n) with o.g.f A(x) = 1 + x*(1 + c(-x)), with c(x) generating A000108 (Catalan). The Z-sequence is z(n) = (-1)^(n+1)*A071724(n), for n >= 1 and z(0) = 1. The o.g.f. is Z(x) = 1 + x*c(-x)^3. See A071724 for a link on A- and Z-sequences, and their use for the recurrence. (End) T(n,k) is the number of tilings of a (2*n+1)-board (a 1 X (2*n+1) rectangular board) using 2*k+1 squares and 2*(n-k) (1,1)-fences. A (1,1)-fence is a tile composed of two squares separated by a gap of width 1. - Michael A. Allen, Mar 20 2021 LINKS G. C. Greubel, Rows n = 0..100 of the triangle, flattened Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6. Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, JIS 24 (2021) 21.3.8. FORMULA Sum_{k=0..n} T(n,k) = Fibonacci(n+1)*Fibonacci(n+2) = A001654(n+1). From Johannes W. Meijer, Jul 20 2011: (Start) T(n, k) = Sum_{i=0..n-k} (-1)^(i+n-k) * binomial(i+2*k+1, i). T(n, k) = A035317(n+k, n-k) = A092879(n, n-k). Sum_{k=0..n} T(n, k)*r^k = coeftayl(1/(1-(r+1)*x-(r+1)*x^2+x^3), x=0, n). [Barry] (End) T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) + T(n-2, k-1) - T(n-3, k), T(0, 0) = 1, T(n, k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 12 2013 From Wolfdieter Lang, Oct 22 2019: (Start) O.g.f. for the row polynomials (that is for the triangle): G(z, x) = 1/((1 + z)*(1 - (x + 2)*z + z^2)), and O.g.f. for column k: x^k/((1+x)*(1-x)^(2*(k+1)) (Riordan property). (End) T(n, k) = binomial(k + n + 2, n - k + 1)*hypergeom([1, k + n + 3], [n - k + 2], -1) + (-1)^(n - k)/4^(k + 1). - Peter Luschny, Oct 31 2019 From Michael A. Allen, Mar 20 2021: (Start) T(n,k) = A335964(2*n+1,n-k). T(n,k) = T(n-2,k) + binomial(n+k,2*k). (End) EXAMPLE From Wolfdieter Lang, Oct 22 2019: (Start) The triangle T(n, k) begins:   n\k  0   1   2    3    4    5    6   7   8  9 10 ...   ----------------------------------------------------   0:   1   1:   1   1   2:   2   3   1   3:   2   7   5    1   4:   3  13  16    7    1   5:   3  22  40   29    9    1   6:   4  34  86   91   46   11    1   7:   4  50 166  239  174   67   13   1   8:   5  70 296  553  541  297   92  15   1   9:   5  95 496 1163 1461 1068  468 121  17  1   10:  6 125 791 2269 3544 3300 1912 695 154 19  1   ... ---------------------------------------------------------------------------- Recurrence: T(5, 2) = 16 + 13 + 5 + 7 - 1 = 40, and T(5, 0) = 3 + 2 - 2 = 3. [using Philippe Deléham's Nov 12 2013 recurrence] Recurrence from A-sequence [1, 2, -1, 2, -5, ...]: T(5, 2) = 1*13 + 2*16 - 1*7 + 2*1 = 40. Recurrence from Z-sequence [1, 1, -3, 9, -28, ...]: T(5, 0) = 1*3 + 1*13 - 3*16 + 9*7 - 28*1 = 3. (End) MAPLE T := (n, k) -> binomial(k+n+2, n-k+1)*hypergeom([1, k+n+3], [n-k+2], -1) + (-1)^(n-k)/4^(k+1): seq(seq(simplify(T(n, k)), k=0..n), n=0..9); # Peter Luschny, Oct 31 2019 MATHEMATICA Table[Sum[(-1)^(j+n-k)*Binomial[j+2*k+1, j], {j, 0, n-k}], {n, 0, 12}, {k, 0, n}] // Flatten (* G. C. Greubel, Mar 18 2021 *) PROG (Sage) flatten([[sum((-1)^(j+n-k)*binomial(j+2*k+1, j) for j in (0..n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2021 (Magma) [(&+[(-1)^(j+n-k)*Binomial(2*k+j+1, j): j in [0..n-k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2021 CROSSREFS Cf. A000045, A001654 (row sums), A008967, A035317, A049310, A092879, A335964. Sequence in context: A209579 A205699 A109200 * A199915 A209557 A183759 Adjacent sequences:  A158906 A158907 A158908 * A158910 A158911 A158912 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, Mar 30 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 06:16 EDT 2021. Contains 347664 sequences. (Running on oeis4.)