OFFSET
1,1
COMMENTS
We iteratively scan integer intervals (2^(m-1)..2^m), first the one with m=5, then m=6, m=7, etc., and start with the set S={3,5,7,11,...} of all odd primes. For each prime p = 2^m-k, 2^(m-1) < p < 2^m, p is removed from S if k is in S. Basically, all the upper primes of primes pairs are removed when the prime pair sums to a power of 2 which are larger than 2^4. The sequence shows all p that are removed from S at any stage m.
Powers 2^m, m >= 5, are not expressible as sums of two primes which are not in the sequence.
MAPLE
A158846 := proc()
local mmax, prrem, m, prm, pi, p, q ;
mmax := 12 ; prrem := {} ;
for m from 5 to mmax do
prm := {} ;
for pi from 1 do
k := ithprime(pi) ;
p := 2^m-k ;
if p <= 2^(m-1) then break; end if;
if isprime(p) and not k in prrem then prm := prm union {p} ;
end if ;
end do:
prrem := prrem union prm ;
end do: print( sort(prrem)) ; return ;
end proc:
A158846() ; # R. J. Mathar, Dec 07 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Mar 28 2009
STATUS
approved