login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158590
a(n) = 324*n^2 + 18.
2
18, 342, 1314, 2934, 5202, 8118, 11682, 15894, 20754, 26262, 32418, 39222, 46674, 54774, 63522, 72918, 82962, 93654, 104994, 116982, 129618, 142902, 156834, 171414, 186642, 202518, 219042, 236214, 254034, 272502, 291618, 311382, 331794, 352854, 374562, 396918
OFFSET
0,1
COMMENTS
The identity (36*n^2 + 1)^2 - (324*n^2 + 18)*(2*n)^2 = 1 can be written as A158591(n)^2 - a(n)* A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: -18*(1 + 16*x + 19*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 14 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(3*sqrt(2)))*Pi/(3*sqrt(2)) + 1)/36.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(3*sqrt(2)))*Pi/(3*sqrt(2)) + 1)/36. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {18, 342, 1314}, 50] (* Vincenzo Librandi, Feb 16 2012 *)
324 Range[0, 40]^2+18 (* Harvey P. Dale, Nov 22 2018 *)
PROG
(Magma) I:=[18, 342, 1314]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
(PARI) for(n=0, 40, print1(324*n^2 + 18", ")); \\ Vincenzo Librandi, Feb 16 2012
CROSSREFS
Sequence in context: A068771 A039646 A212669 * A143168 A127585 A230348
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 22 2009
EXTENSIONS
Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009
STATUS
approved