login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158587
a(n) = 289*n^2 - 17.
2
272, 1139, 2584, 4607, 7208, 10387, 14144, 18479, 23392, 28883, 34952, 41599, 48824, 56627, 65008, 73967, 83504, 93619, 104312, 115583, 127432, 139859, 152864, 166447, 180608, 195347, 210664, 226559, 243032, 260083, 277712, 295919, 314704, 334067, 354008, 374527
OFFSET
1,1
COMMENTS
The identity (34*n^2 - 1)^2 - (289*n^2 - 17) * (2*n)^2 = 1 can be written as A158588(n)^2 - a(n) * A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 17*x*(-16 - 19*x + x^2)/(x-1)^3.
From Amiram Eldar, Mar 14 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(17))*Pi/sqrt(17))/34.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(17))*Pi/sqrt(17) - 1)/34. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {272, 1139, 2584}, 50] (* Vincenzo Librandi, Feb 15 2012 *)
289*Range[40]^2-17 (* Harvey P. Dale, Jan 30 2019 *)
PROG
(Magma) I:=[272, 1139, 2584]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
(PARI) for(n=1, 50, print1(289*n^2-17", ")); \\ Vincenzo Librandi, Feb 15 2012
CROSSREFS
Sequence in context: A317269 A253113 A234884 * A304417 A316242 A230908
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 22 2009
EXTENSIONS
Comment rewritten by R. J. Mathar, Oct 16 2009
STATUS
approved