login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158589
a(n) = 324*n^2 - 18.
1
306, 1278, 2898, 5166, 8082, 11646, 15858, 20718, 26226, 32382, 39186, 46638, 54738, 63486, 72882, 82926, 93618, 104958, 116946, 129582, 142866, 156798, 171378, 186606, 202482, 219006, 236178, 253998, 272466, 291582, 311346, 331758, 352818, 374526, 396882, 419886
OFFSET
1,1
COMMENTS
The identity (36*n^2 - 1)^2 - (324*n^2 - 18)*(2*n)^2 = 1 can be written as A136017(n)^2 - a(n)* A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
From Vincenzo Librandi, Feb 16 2012: (Start)
G.f.: -18*x*(17 + 20*x - x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 14 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(3*sqrt(2)))*Pi/(3*sqrt(2)))/36.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(3*sqrt(2)))*Pi/(3*sqrt(2)) - 1)/36. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {306, 1278, 2898}, 40] (* Vincenzo Librandi, Feb 16 2012 *)
324*Range[40]^2-18 (* Harvey P. Dale, Jul 25 2019 *)
PROG
(Magma) I:=[306, 1278, 2898]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
(PARI) for(n=1, 40, print1(324*n^2 - 18", ")); \\ Vincenzo Librandi, Feb 16 2012
CROSSREFS
Sequence in context: A294710 A206271 A236012 * A030030 A206679 A172966
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 22 2009
EXTENSIONS
Comment rewritten by R. J. Mathar, Oct 28 2009
STATUS
approved