login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158226
a(n) = 225*n^2 - 2*n.
2
223, 896, 2019, 3592, 5615, 8088, 11011, 14384, 18207, 22480, 27203, 32376, 37999, 44072, 50595, 57568, 64991, 72864, 81187, 89960, 99183, 108856, 118979, 129552, 140575, 152048, 163971, 176344, 189167, 202440, 216163, 230336, 244959, 260032
OFFSET
1,1
COMMENTS
The identity (225*n-1)^2-(225*n^2-2*n)*(15)^2=1 can be written as A158227(n)^2-a(n)*(15)^2=1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(15^2*t-2)).
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-223-227*x)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {223, 896, 2019}, 50]
Table[225n^2-2n, {n, 40}] (* Harvey P. Dale, Feb 25 2021 *)
PROG
(Magma) I:=[223, 896, 2019]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 225*n^2 - 2*n
CROSSREFS
Cf. A158227.
Sequence in context: A345198 A094459 A108819 * A253953 A205273 A205266
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 14 2009
STATUS
approved