OFFSET
1,1
COMMENTS
The identity (196*n-1)^2-(196*n^2-2*n)*(14)^2=1 can be written as A158225(n)^2-a(n)*(14)^2=1.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(14^2*t-2)).
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(-194-198*x)/(x-1)^3.
MAPLE
MATHEMATICA
Table[196n^2-2n, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {194, 780, 1758}, 40] (* Harvey P. Dale, Jul 03 2017 *)
PROG
(PARI) a(n) = 196*n^2 - 2*n;
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 14 2009
STATUS
approved