login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 225*n^2 - 2*n.
2

%I #24 Nov 11 2024 20:30:40

%S 223,896,2019,3592,5615,8088,11011,14384,18207,22480,27203,32376,

%T 37999,44072,50595,57568,64991,72864,81187,89960,99183,108856,118979,

%U 129552,140575,152048,163971,176344,189167,202440,216163,230336,244959,260032

%N a(n) = 225*n^2 - 2*n.

%C The identity (225*n-1)^2-(225*n^2-2*n)*(15)^2=1 can be written as A158227(n)^2-a(n)*(15)^2=1.

%H Vincenzo Librandi, <a href="/A158226/b158226.txt">Table of n, a(n) for n = 1..10000</a>

%H Vincenzo Librandi, <a href="http://mathforum.org/kb/message.jspa?messageID=5785989&amp;tstart=0">X^2-AY^2=1</a>

%H E. J. Barbeau, <a href="http://www.math.toronto.edu/barbeau/home.html">Polynomial Excursions</a>, Chapter 10: <a href="http://www.math.toronto.edu/barbeau/hxpol10.pdf">Diophantine equations</a> (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(15^2*t-2)).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).

%F G.f.: x*(-223-227*x)/(x-1)^3.

%t LinearRecurrence[{3,-3,1},{223,896,2019},50]

%t Table[225n^2-2n,{n,40}] (* _Harvey P. Dale_, Feb 25 2021 *)

%o (Magma) I:=[223, 896, 2019]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];

%o (PARI) a(n) = 225*n^2 - 2*n

%Y Cf. A158227.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Mar 14 2009