login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158138
Number of nondecreasing integer sequences of length 4 with sum zero and sum of absolute values 2n.
1
1, 4, 6, 11, 13, 22, 24, 35, 39, 52, 56, 73, 77, 96, 102, 123, 129, 154, 160, 187, 195, 224, 232, 265, 273, 308, 318, 355, 365, 406, 416, 459, 471, 516, 528, 577, 589, 640, 654, 707, 721, 778, 792, 851, 867, 928, 944, 1009, 1025, 1092, 1110, 1179, 1197, 1270, 1288
OFFSET
1,2
COMMENTS
a(n) = A000041(n)^2 for n<=2
a(n) = A000041(n)^2 - cumulative A000712(2*n-1-length), 0 <= 2*n-1-length <= floor(n/2) [empirical].
LINKS
FORMULA
a(n) = (floor(n/2) + 1)^2 + 2*A069905(n). - Georg Fischer, Apr 20 2022
EXAMPLE
For n = 6, we count the possible concatenations of the 4 pairs in the list (-6,0),(-5,-1),(-4,-2),(-3,-3) with their negative reversed correspondants (starting with (-6,0,0,6)), giving (6/2 + 1)^2 = 16 quadruples, plus the 3 quadruples (-6,1,1,4), (-6,1,2,3), (-6,2,2,2) and their 3 negative reversed correspondants, giving a total of 22 possibilities. - Georg Fischer, Apr 20 2022
PROG
(AWK) # empirical
function a(n) { s=1; for(i=1; i<n; i++) { if(i%2==0)s+=2*int((i+5)/6); else s+=(i+2)+2*int((i+1)/6); } return s; }
CROSSREFS
Cf. A069905, A158139-A158184 (for length 5..50).
Sequence in context: A287565 A163417 A247336 * A096833 A153357 A310591
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 13 2009
STATUS
approved