login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158136
a(n) = 144*n - 1.
2
143, 287, 431, 575, 719, 863, 1007, 1151, 1295, 1439, 1583, 1727, 1871, 2015, 2159, 2303, 2447, 2591, 2735, 2879, 3023, 3167, 3311, 3455, 3599, 3743, 3887, 4031, 4175, 4319, 4463, 4607, 4751, 4895, 5039, 5183, 5327, 5471, 5615, 5759, 5903, 6047, 6191
OFFSET
1,1
COMMENTS
The identity (144*n - 1)^2 - (144*n^2 - 2*n)*12^2 = 1 can be written as a(n)^2 - A158135(n)*12^2 = 1. - Vincenzo Librandi, Feb 11 2012
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(12^2*t-2)).
FORMULA
G.f.: x*(143+x)/(1-x)^2. - Vincenzo Librandi, Feb 11 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 11 2012
MATHEMATICA
144Range[50]-1 (* Harvey P. Dale, Feb 14 2011 *)
LinearRecurrence[{2, -1}, {143, 287}, 50] (* Vincenzo Librandi, Feb 11 2012 *)
PROG
(Magma) I:=[143, 287]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 11 2012
(PARI) for(n=1, 40, print1(144*n - 1", ")); \\ Vincenzo Librandi, Feb 11 2012
CROSSREFS
Cf. A158135.
Sequence in context: A353059 A176876 A257767 * A153874 A003902 A261074
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 13 2009
STATUS
approved