The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158035 2 * A158034 + 1, prime numbers p for which f = (2^p - 2^((p - 1) / 2 + 1) + 4p^2 - 8p) / (2p^2 - 2p) is an integer. 8
7, 23, 47, 167, 263, 359, 383, 479, 487, 503, 719, 839, 863, 887, 983, 1319, 1367, 1439, 1487, 1783, 1823, 2039, 2063, 2207, 2447, 2879, 2903, 2999, 3023, 3079, 3119, 3167, 3623, 3863, 4007, 4079, 4127, 4423, 4679, 4703, 4799, 4919, 5023, 5087, 5399, 5639 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
(p - 1) / 2 is often prime.
LINKS
MAPLE
A158035 := proc(n) local i, am, p, tren;
am := [ ]:
for i from 2 to n do
p := ithprime(i):
tren := (2^(p) - 2^((p - 1) / 2 + 1) + 4*p^(2) - 8*p) / (2*p^(2) - 2*p):
if (type( tren, 'integer') = 'true') then
am := [op(am), p]:
fi
od; RETURN(am) end:
A158035(740); # Jani Melik, May 06 2013
MATHEMATICA
Select[Prime[Range[800]], IntegerQ[(2^#-2^((#-1)/2+1)+4#^2-8#)/(2#^2-2#)]&] (* Harvey P. Dale, Nov 08 2017 *)
CROSSREFS
Cf. A158034.
Cf. A002515 (Lucasian primes).
Cf. A145918 (exponential Sophie Germain primes).
Cf. A046318, A139876 (related to composite members of A158034: 243, 891, 1539, and 2511).
Sequence in context: A139830 A153210 A185955 * A101789 A174590 A162290
KEYWORD
easy,nonn
AUTHOR
Reikku Kulon, Mar 11 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 17:00 EDT 2024. Contains 372804 sequences. (Running on oeis4.)