login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157805
Numerator of Euler(n,3).
3
1, 5, 6, 55, 30, 125, 126, 2015, 510, 2075, 2046, 15685, 8190, 38225, 32766, 118975, 131070, 3726575, 524286, -217736285, 2097150, 4730505125, 8388606, -968249463115, 33554430, 14717801331875, 134217726, -2093659805510855, 536870910, 86125674710684825
OFFSET
0,2
LINKS
Vladimir Shevelev, On a Luschny question, arXiv:1708.08096 [math.NT], 2017.
Vladimir Shevelev, A formula for numerator of Euler(n,k), Wed Sep 06 2017.
FORMULA
From Vladimir Shevelev, Sep 04 2017: (Start)
For even n, a(n) = 2^(n+1) - 2 + delta(n,0), where delta is the Kronecker symbol; for n == 1 (mod 4), a(n) = (2^(n+1)-2)*A006519(n+1) + A002425((n+1)/2); for n == 3 (mod 4), a(n) = (2^(n+1)-2)*A006519(n+1) - A002425((n+1)/2).
A generalization: Let N(n,k) denote numerator of Euler(n,k), k >= 1 is integer. Set u(n,k) = 2*Sum_{1 <= i <= k-1}(-1)^(i-1)*(k-i)^n. Then, for even n, N(n,k) = u(n,k) + (-1)^(k-1)^delta(n,0); for n == 1 (mod 4), N(n,k) = u(n,k)*A006519(n+1) + (-1)^(k-1)*A002425((n+1)/2); for n == 3 (mod 4), N(n,k) = u(n,k)* A006519 (n+1) - (-1)^(k-1)*A002425((n+1)/2). (End)
EXAMPLE
By the formula, we have a(1) = 2*2 + 1 = 5, a(3) = 14*4 - 1 = 55, a(5) = 62*2 + 1 = 125, a(7) = 254*8 - 17 = 2015, a(9) = 1022*2 + 31 = 2075, etc. - Vladimir Shevelev, Sep 04 2017
MATHEMATICA
a2425[n_] := (-1)^n/n*(1 - 4^n)*BernoulliB[2*n]*2^IntegerExponent[2*n, 2];
a6519[n_] := 2^IntegerExponent[n, 2];
a[n_] := Switch[Mod[n, 4], 0 | 2, 2^(n + 1) - 2 + KroneckerDelta[n, 0], 1, (2^(n + 1) - 2)*a6519[n + 1] + a2425[(n + 1)/2], 3, (2^(n + 1) - 2)*a6519[n + 1] - a2425[(n + 1)/2]];
Table[a[n], {n, 0, 30}]
(* or *)
Table[EulerE[n, 3] // Numerator, {n, 0, 30}] (* Jean-François Alcover, Jul 14 2018 *)
CROSSREFS
For denominators see A006519.
Cf. A002425.
Sequence in context: A163481 A298376 A269908 * A256291 A299243 A191557
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 10 2009
STATUS
approved