The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157805 Numerator of Euler(n,3). 3
 1, 5, 6, 55, 30, 125, 126, 2015, 510, 2075, 2046, 15685, 8190, 38225, 32766, 118975, 131070, 3726575, 524286, -217736285, 2097150, 4730505125, 8388606, -968249463115, 33554430, 14717801331875, 134217726, -2093659805510855, 536870910, 86125674710684825 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vladimir Shevelev, On a Luschny question, arXiv:1708.08096 [math.NT], 2017. Vladimir Shevelev, A formula for numerator of Euler(n,k), Wed Sep 06 2017. FORMULA From Vladimir Shevelev, Sep 04 2017: (Start) For even n, a(n) = 2^(n+1) - 2 + delta(n,0), where delta is the Kronecker symbol; for n == 1 (mod 4), a(n) = (2^(n+1)-2)*A006519(n+1) + A002425((n+1)/2); for n == 3 (mod 4), a(n) = (2^(n+1)-2)*A006519(n+1) - A002425((n+1)/2). A generalization: Let N(n,k) denote numerator of Euler(n,k), k >= 1 is integer. Set u(n,k) = 2*Sum_{1 <= i <= k-1}(-1)^(i-1)*(k-i)^n. Then, for even n, N(n,k) = u(n,k) + (-1)^(k-1)^delta(n,0); for n == 1 (mod 4), N(n,k) = u(n,k)*A006519(n+1) + (-1)^(k-1)*A002425((n+1)/2); for n == 3 (mod 4), N(n,k) = u(n,k)* A006519 (n+1) - (-1)^(k-1)*A002425((n+1)/2). (End) EXAMPLE By the formula, we have a(1) = 2*2 + 1 = 5, a(3) = 14*4 - 1 = 55, a(5) = 62*2 + 1 = 125, a(7) = 254*8 - 17 = 2015, a(9) = 1022*2 + 31 = 2075, etc. - Vladimir Shevelev, Sep 04 2017 MATHEMATICA a2425[n_] := (-1)^n/n*(1 - 4^n)*BernoulliB[2*n]*2^IntegerExponent[2*n, 2]; a6519[n_] := 2^IntegerExponent[n, 2]; a[n_] := Switch[Mod[n, 4], 0 | 2, 2^(n + 1) - 2 + KroneckerDelta[n, 0], 1, (2^(n + 1) - 2)*a6519[n + 1] + a2425[(n + 1)/2], 3, (2^(n + 1) - 2)*a6519[n + 1] - a2425[(n + 1)/2]]; Table[a[n], {n, 0, 30}] (* or *) Table[EulerE[n, 3] // Numerator, {n, 0, 30}] (* Jean-François Alcover, Jul 14 2018 *) CROSSREFS For denominators see A006519. Cf. A002425. Sequence in context: A163481 A298376 A269908 * A256291 A299243 A191557 Adjacent sequences:  A157802 A157803 A157804 * A157806 A157807 A157808 KEYWORD sign,frac AUTHOR N. J. A. Sloane, Nov 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 23:45 EDT 2020. Contains 336434 sequences. (Running on oeis4.)