login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157804
a(n) = 1482401250*n^2 - 2793393900*n + 1315947601.
3
4954951, 1658764801, 6277377151, 13860792001, 24409009351, 37922029201, 54399851551, 73842476401, 96249903751, 121622133601, 149959165951, 181261000801, 215527638151, 252759078001, 292955320351, 336116365201, 382242212551
OFFSET
1,1
COMMENTS
The identity (1482401250*n^2 - 2793393900*n + 1315947601)^2 - (27225*n^2 - 51302*n + 24168)*(8984250*n - 8464830)^2 = 1 can be written as a(n)^2 - A157802(n)*A157803(n)^2 = 1.
This is the case s=165 and r=25651 of the identity (2*(s^2*n-r)^2-1)^2 - (((s^2*n-r)^2-1)/s^2)*(2*s*(s^2*n-r))^2 = 1, where ((s^2*n-r)^2-1)/s^2 is an integer if r^2 == 1 (mod s^2). Therefore, for s=165, nonnegative r values are: 1, 1574, 6049, 7624, 19601, 21176, 25651, 27224, ... - Bruno Berselli, Apr 24 2018
FORMULA
G.f.: x*(4954951 + 1643899948*x + 1315947601*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {4954951, 1658764801, 6277377151}, 30]
PROG
(Magma) I:=[4954951, 1658764801, 6277377151]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..30]];
(PARI) a(n) = 1482401250*n^2 - 2793393900*n + 1315947601;
CROSSREFS
Sequence in context: A143687 A244266 A222976 * A151646 A210318 A359296
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 07 2009
STATUS
approved