login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 1482401250*n^2 - 2793393900*n + 1315947601.
3

%I #23 Sep 08 2022 08:45:42

%S 4954951,1658764801,6277377151,13860792001,24409009351,37922029201,

%T 54399851551,73842476401,96249903751,121622133601,149959165951,

%U 181261000801,215527638151,252759078001,292955320351,336116365201,382242212551

%N a(n) = 1482401250*n^2 - 2793393900*n + 1315947601.

%C The identity (1482401250*n^2 - 2793393900*n + 1315947601)^2 - (27225*n^2 - 51302*n + 24168)*(8984250*n - 8464830)^2 = 1 can be written as a(n)^2 - A157802(n)*A157803(n)^2 = 1.

%C This is the case s=165 and r=25651 of the identity (2*(s^2*n-r)^2-1)^2 - (((s^2*n-r)^2-1)/s^2)*(2*s*(s^2*n-r))^2 = 1, where ((s^2*n-r)^2-1)/s^2 is an integer if r^2 == 1 (mod s^2). Therefore, for s=165, nonnegative r values are: 1, 1574, 6049, 7624, 19601, 21176, 25651, 27224, ... - _Bruno Berselli_, Apr 24 2018

%H Vincenzo Librandi, <a href="/A157804/b157804.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: x*(4954951 + 1643899948*x + 1315947601*x^2)/(1 - x)^3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

%t LinearRecurrence[{3, -3, 1}, {4954951, 1658764801, 6277377151}, 30]

%o (Magma) I:=[4954951, 1658764801, 6277377151]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..30]];

%o (PARI) a(n) = 1482401250*n^2 - 2793393900*n + 1315947601;

%Y Cf. A157802, A157803.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Mar 07 2009